
_q

N88-19119

Production Automation Project

College of Engineering & Applied Science

The University of Rochester

Rochester, New York 14627

A HIERARCHICAL STRUCTURE FOR AUTOMATIC

MESHING AND ADAPTIVE FEM ANALYSIS

by

Ajay Kela, Mukul Saxena and Renato Perucchio

(November 1986)

submitted for publication in

a special issue of

Engineering Computations

The work described in this paper was supported by the National Sci-

ence Foundation under Grants ECS-8104646 and DMC-8403882 and by

companies in the P.A.P.'s Industrial Associates Program. The findings and

opinions expressed here are those of the authors and do not necessarily

reflect the views of the various sponsors.



A HIERARCHICAL STRUCTURE FOR AUTOMATIC MESHING

AND ADAPTIVE FEM ANALYSIS

Ajay Kela"

Corporate Research and Development

General Electric Company

Schenectady, N.Y. 12301

&

Mukul Saxena and Renato Perucchio ""

Production Automation Project

and Department of Mechanical Engineering

University of Rochester

Rochester, N.Y. 14627, U.S.A.

SUMMARY

This paper deals initiallywith a new algorithm for generating automatically, from

solid models of mechanical parts,/mite element meshes that are organized as spatiallyad-

dressable quaternary trees (for 2-D work) or octal trees (for 3-D work). Because such

meshes are hzherently hierarchicalas wellas spatiallyaddressable, they permit e_cient sub-

structurhag techniques to be used for both global analysis and £ncremental re-meshlng and

re-analys/s. The paper summarizes the global and incremental techniques, and presents

some results from an experhnental closed loop 2-1) system in which meshing, analysis, error

evaluation, and re-meshing and re-analysis are done automatically and adaptively. The

paper concludes with a progress report on a 3-D implementation.

@

former Research Assistant, Production Automation Project

"" Research Assistant and Director, respectively



Kela, Sezena 8SPerucchio

1 INTRODUCTION

Interactive computer graphics has reduced the cost of using the Finite Element

Method (FEM) to analyze mechanical parts and structures [PERU82]. However, interactive

mesh generation still requires the guidance and ingenuity of an expert analyst to produce

a valid FEM model, to interpret computed results and to modify the model when results

are questionable. Thus analysing a fixed dmign is usually an iterative process; moreover

as design itself is iterative, the current use of the FEM requires continued human guidance

within a doubly iterative process. It is obvious that automatic mesh generation, followed

by adaptive mesh refinement would dramatically reduce the cost of the design process. Two

newly available tools - solid modelling systems [REQU83] and algorithms for a posteriori

error analysis [BABU78,PEAN79,KELL83,GAGO83] - make this goal reachable.

< Figure 1 >

Figure 1 illustrates the architecture of an automatic analysis system. The user

defines an initial geometrical domain in the Solid Modelling System (SMS) together with

such attributes as boundary conditions, loads, material properties, and analysis related

parameters. The mesh generator produces a discretized model - the FEM mesh - from the

geometric definition and the attribute specification (attributes may determine, for example,

the locations of some nodes). The FEM analysis processor computes primary and secondary

field variables (in general, the displacements vector at nodal points and the stress tensor

within the elements) from the initial FEM model. The error evaluator compares global

error estimates derived from the analysis output with pre--epecified error-tolerances to either

accept the results or request a new analysis based on a modified mesh. In the feed-back

loop, the analysis control process indicates regions of refinement in the current model for

the next cycle of mesh generation and analysis. In case of reanalysis, mesh generation

and mesh analysis proceed through localized mesh refinement and incremental re-analysis,

i.e. the use of previous unaltered regions of the mesh as well as intermediate analysis

computations to derive new results. This approach to automatic FEM analysis is embodied

in an experimental 2-D system whose underlying principles are explained below. All meshes

and analytical results that appear in later sections were produced with the experimental

system.



Kela, $_ena 0 Peru¢¢hio 2

The next section opens with a discussion of automatic mesh generation focussed

mainly on a particular approach - hierarchical grids - that fosters spatial addressability (an

important property explained below). Later sections discuss algorithms for (1) generating hi-

erarchical grid-based meshes, then (2) analyzing such meshes, (3) refining and re--analyzing,

and finally (4) extending meshing and analysis to 3-D work. The paper concludes with a

short discussion of the strengths and weaknesses of the approach.

2 AUTOMATIC MESH GENERATION

Most "automatic" meshing facilities in contemporary CAD systems operate from

wireframe descriptions of objects, via mapping algorithms. The user must partition the

domain, which is represented by a collection of edges, into a set of topologically simple

subdomains in which meshes can be generated automatically. This approach is unsuitable

for a fully automatic meshing procedure because it depends on human judgement both to

guide meshing per se and to resolve ambiguities in the wireframe representation.

Genuinely automatic mesh generation must start from an unambiguous represen-

tation of the object to be analyzed, and thus some form of solid modelling system (SMS)

is a primary utility. Nearly all current SMS's are based internally on either a Constructive

Solid Geometry (CSG) Representation or a Boundary Representation, or both [REQU83].

CSG exploits the notion of "adding" and "subtracting" (via set-union and set--difference

operations) simple solid building blocks. Boundary schemes describe solids indirectly, via

sets of faces which are represented by sets of edges that bound finite regions of surfaces.

The various schemes that have been proposed for automatic mesh generation may

be catalogued for present purposes into three families: triangulation, element extraction and

recursive spatial subdivision (quadtree and octree) schemes. We shall discuss the first two

family briefly and then focus on the third.

Originally limited to 2-D problems, triangulation sigorithnm require some level of

interactive user control to generate irregular assemblies of triangular elements [SUHA72].

Recently, however, Cavendish and co-workers [CAVE85] have developed a two-stage ap-

proach to automatic triangulation of solid domains. In the Cavendish method, points are

injected into the domain, and then a solid triangulation is induced in which the points



Eela, S6zena 8 Peru¢¢hio 3

become nodes of tetrahedral elements. The main working tool of the second-stage triangu-

lation is a Delaunay algorithm that generates valid meshes of tetrahedral elements within

convex hulls of node points. Automatic algorithms are still being sought for (a) inserting

points in the procedure's first stage, (b) removing elements that are generated outside the

domain, and (c) representing the domaln's boundary correctly.

Meshing schemes based on element extraction also result in decomposing the do-

main into a irregular collection of tetrahedral elements [WOO84, WORD84]. Elements are

extracted by recursively applying a set of operators that work on the topological and geomet-

rical description of the domain. The tetrahedral meshes that result are coarse and usually

contain distorted elements that must be refined for analytical use. Also, existing operators

for element extraction are not robust as required for a truly automatic implementation.

In both of these family of approaches, mesh refinement is done by splitting existing

elements. Because refinement is driven from a FEM mesh rather than from the original

solid model, refinement does not improve the geometric apprcQctmation of the original solid.

Also, the meshes are not spatially addressable.

The idea underlying recursive spatial subdivision schemes is to apprcw_nate the

object to be meshed with a union of disjoint, variably sized rectangles (in 2-D) or blocks (in

3-D); these are generated by subdividing recursively a spatial region enclosing the object,

rather than the object itself. Figure 2.1 provides a 2-D example. The object - a bracket

with a hole - is "boxed" to establish a convenient minimal spatial region, and then the box

is decomposed into quadrants. When a quadrant can be classified as wholly inside or outside

of the object, subdivision ceases; when a quadrant cannot be so classified, it is subdivided

into quadrants and this process continues until some minimal resolution level is reached. (In

3-D, the decomposition proceeds by octants.) Apprccximations produced in this manner can

be represented by logical trees whose nodes have four or eight sons (see Figure 2), hence the

popular names quadtree and octree [JACK80].

< Figure 2 >

Inside cells of a spatial decomposition can be converted easily into FEM elements or sub-

structures, but Boundary cells require further processing to produce valid elements that

approximate closely the object's boundary.

Recursive spatial decompositions have two intrinsic properties - hierarchical struc-

ture and spatial addressability - that are central to the mesh refinement and incremental



Kela, $azena 0 Perucchio 4

analysis techniques described later. These intrinsic properties, briefly presented here, are

fully discussed in [KELA87].

The tree structure in Figure 2 can be regarded as an organizing or cataloging

structure for data describing particular regions of space. At the lowest level of the tree

one finds the smallest spatial regions and simplest finite elements. As one ascends the tree,

the regions become larger (encompassing multiples of four or eight elemental regions) and

the finite elements become super--elements with associated ('assembled') stiffness matrices,

collected constraints, and so forth. Ks we shall see later, such an organization is ideally

suited to mesh refinement by subdivision and incremental mesh analysis.

The diagram in Figure 2 suggests the classical approach to accessing the data struc-

ture associated with the tree: represent a tree with a linked-list in which nodes are addressed

indirectly through downward pointers to sons and perhaps lateral pointers to siblings. Thus

one accesses data by following pointers downward from the root of the tree. Alternatively,

a recursive spatial decomposition can be viewed as a directly addressable hierarchical gri.....dd

in which the number of cells in each linear dimension is an integer power of two. The key

notion here is a systematic scheme for numbering all possible nodes of the underlying tree.

In Figure 2, "1" represents the enclosing box, "2" - "5" represent specific quadrants of "1" ,

"6" - "9" would represent quadrants of "2", and so on. Thus to access the spatial data for

a particular node in the underlying tree, one merely calculates an array index through a

simple formula and follows the single pointer stored there. This is usually much faster than

the pointer-following method noted above, but it carries a storage penalty [KELA87].

Suppose finally that we know the geometric size and spatial position of the "1" cell

(the overall box) in Figure 2. We can compute quickly the index of any cell in the hierarchy

from its size and position, and conversely from an index we can compute quickly the size

and position of the associated spatial cell. We have already seen that cell indices allow

access through a single pointer to data associated with the cell, and thus we can associate,

without searching, spatial regions with stored data, and stored data with spatial regions.

This is what is meant by spatial addressability.



Kela, S=ena • Perucchio 5

3 AN AUTOMATIC MESHING PROCEDURE

The procedure described below produces a spatially addressable FEM mesh em-

bedded in the lowest level of a hierarchical grid. Higher levels of the grid are used during

construction of the mesh and, as explained later, when the mesh k analyzed, refined, and

incrementally re-analyzed. The procedure starts with a representation in a Solid Modelling

System of the object to be meshed, and operates in two stages. The first stage meshes the

interior of the object by spatial subdivision, and the second extends the mesh to the object's

boundary. Each stage is described and illustrated below. 1

We wish to note that the use of quadtree/octree methods for automatic mesh gen-

eration was pioneered by Shephard & Yerry [YERR83,YERR84]. Our work is similar to

theirs, but the differences are real and important.

STAGE 1: Interior Meshing See Figure 3. The object S is enclosed in a box which is recur-

sively subdivided into a grid whose smallest cell size determines the element size (or element

density) of the initialFEM mesh; thisminimal size isdetermined by subdividing cellsuntil

no cellcontains more than one connected boundary segment of S. As the subdivision pro-

ceeds the cellsare classifiedas being In.__S('IN"), Out of S ('OUT"), or Neither In nor Out

('NIO"). Cells classifiedas IN at higher levelsin the hierarchy are subdivided to the final

grid size without further classification.The collectionof IN cellsconstitutes the interior

mesh of S.

< Figure 3 >

The main computational utilityused for cellclassificationisthe modified cellclas-

sificationprocedure

ModUlaaaUdl(©ell, adid) = ('IN', "OUT', "?"),

which is described fully in [LEES2].

STAGE 2: Boundary-Region Meshing

The task here isto fillthe region between the boundary ofthe interiormesh (denoted

bIS - see Figure 4a) and the boundary bS of the solidS. Observe that

bS C (U NIO ¢e118) U blS

I

The discu_ion here m_d in the next severalsectionsiscut in 2-9; 3-D extensionsare

discussedin section6.



Kcla, Sazena _ Perucchio 0

Thus bS usually is contained in the NIO cells and special element-building operations are

required, but sometimes segments of bS coincide with bIS (as at the top of Figure 4a) and no

special processing is needed. Thus we can mesh the inter-boundary region by visiting each

NIO cell and creating elements that link the bS segment passing through it to the interior

of the solid.

< Figure 4 >

There are three main technical issues involved in this process: devising a systematic

way to insure that allNIO cellsare visited,creating nodes on bS, and associatingbS-nodes

with existing bIS-nodes to form validelements. We shalldiscuss each of these issuesbriefly.

All NIO cellscan be visitedby an exhaustive scan of the lowest-levelgrid,or by tree

traversal,or by traversing bS. Since no singleapproach seems to offersubstantialadvantages

over the others, we use grid--scanfor generating the initialmesh and, because operations

tend to be more localized,tree--traversalfor re-meshing and re-analysis.

Figure 4a shows exemplary bS nodes (PI, P2, P3 in Figure 4a) that are created as

follows.

• Vertices of bS within each NIO cell(e.g. P2 in Figure 4a) are tagged as such and

are always used as finiteelement nodes.

• Additional bS nodes are created by intersectingbS with the boundaries of the NIO

cells(P1 and P3 in Figure 4a).

The generation of valid elements within an NIO cell is straightforward if the cell

does not contain bS-vertices (corner-nodes): nodes on bS and blS belonging to the same

NIO cell are simply linked to form quadrilateral and triangular elements (see the lower left

portion of Figure 4b). When a corner is present, the corner node is linked to bS and bIS

nodes within the cell and templates are used to form a web of triangular elements - see

Figure 4b. To avoid generating elements with poor aspect ratios, the distances between

nodes are checked by using a node-neighborhood test, and closely spaced nodes are merged

into single nodes on bS. Figure 5 provides an example of this process.

< Figure 5 >

The FEM mesh iscomplete at the end of Stage 2. A regular mesh of quadrilateral

elements in the interiorresultsfrom a directmapping of IN cells.On the boundary, NIO cells

are associated with quadrilateral and triangular elements. It isimportant to note that, the



Kela, 8oaena #/perucchio 7

FEM mesh inherits the spatial addressability and structure of the hierarchical grid because

elements and substructures are associated with the quadrants of the original decomposition.

Figure 6 shows an example of a mesh generated by our automatic procedure.

< Figure 6 >

The Shephard-Yerry (S-Y) boundary-region meshing algorithm performs in/out

tests on the mid-points and quarter-points of the edges of NIO cells, and then maps each

NIO cell into one of a finite number of cut-quadrant forms; each cut-quadrant is then

meshed. (We avoid such geometric apprcDdmations by computing exact points of intersection

on bS.) The final stages of the S-Y algorithm move nodes in NIO cells to the boundary, and

then eliminate ill-formed elements by using a Lagrangian relaxation procedure to smooth a

triangulated version of the entire mesh. This last operation destroys the uniform quadrilat-

eral interior mesh and also spatial addressability - because elements are not constrained to

remain in their original cells.

4 ANALYSIS OF HIERARCHICAL 1VIESHES

This section summarizes a FEM analysis procedure that exploits the properties of

the hierarchical, spatially addressable meshes described above. Recall that data specifying

the finite elements in the initial mesh are accessed through the lowest level of the hierarchical

grid.

One analytical simplification is immediately obvious: because the interior mesh

elements are uniform, their stiffness matrices are identical if the material properties are

homogeneous and thus only one stiffness matrix need be computed for all of the interior

elements. Other, more important analytical simplifications accrue during both assembly

and solution of the system of equations, because the hierarchical grid - which has provided

spatial substructuring for meshing - can serve also as a multi-level analytical substructuring

mechanism.

Assembly Procedure

Most FEM analysis procedures build a single stiffness matrix to cover the whole

domain. Our Assembler builds and stores stiffness matrices for every non- OUT cell in the

hierarchical grid. This is done bottom-up - see Figure 7 - by assembling son-matrices and

condensing-out interior d.o.f.'s to build parent-matrices at each level. The parent nodes of



Kela, $_ena 8 Perucchio 8

the interiormesh with identicalsons (uniform) yield identicalsubstructures, hence need be

assembled only once. (The mesh generator tags identicalinterior-mesh nodes at alllevelsof

the tree to facilitatethis.)

< Figure 7 >

Figure 4.2 shows an initialmesh and substructures at various levelsin the assembly

process. Note in Figure 4.2 a that the initialmesh contains some higher-level substructures;

these arisenot from assembling lowest-levelIN -elements, but from intermediate-level cells

that were classifiedas IN and tagged as substructures during Stage--1meshing. (The identi.

cal stiffnessmatrices for lowest-levelIN --cellsare needed in the assembly process only when

IN -elements must be assembled with elements in NIO cells.)

< F_ure 8 >

Solution Procedure

Figure 9 illustratesvarious stages in the solution process. After loads and boundary

conditions are attached to the root structure,the Solver computes the displacements of all

nodal points on the boundary (i.e.the nodal points of the root substructure - see Figure

9a) and then traverses down the tree, recovering displacements of substructure nodes at

each level.The displacements at alllevelsare saved-in data records accessed through the

hierarchicalgrid, and the lowest-leveldisplacements are used to compute the stressesin the

elements. 2

< Figure 9 >

Remarks on the Assembly and Solution Procedures

Our experience to date with thissubstructuring approach to analysis indicatesthe

following.

• The hierarchical grid used for mesh generation has almost all of the data manage-

ment facilities needed for analytical substructuring.

The computing time and storage requirements for internal-element assembly are

substantially reduced.

We conjecture that our substructuri_ technique is asymptotically more effecient

than the methods used in standard solvers. Preliminary result that support our

conjecture will be reported in [KELA87].

All analysis presented here are linear-4tatic, based on linear iaoparametric elements.



Kela, Sazena 8 Perucchio 0

• Substructuring based on trees lends itself naturally to parallel (computer) process-

ins.

More broadly our particular approach to substructuring seems promising for non-

linear as well as linear analysis. In many practical problems (e.g. contact problems, fracture

mechanics, localised plasticity), non-linear behavior occurs in isolated regions, and spatially

localized analytical methods should prove to be e1_cient. (For example: during analysis

regions that become non-linear can be tagged in the grid and handled specially.) In other

types of problems one may want displacements and stresses only in small critical regions,

and here again spatially localised methods seem very appropriate.

5 SELF-ADAPTIVE INCREMENTAL ANALYSIS

In this section we discuss first the techniques used for managing mesh refinement

and incremental analysis, and then an error--driven algorithm for closing the feed-back loop

in Figure 1.

5.1 Refinement and Re-Analysis

Assume that (1) a mesh has been constructed at the lowest level of the grid, (2) the

mesh has been analyzed and the results stored in the grid and (3) evaluation of the results

(discussed in the next subsection) has indicated that refinement is needed in a particular

spatial region.

Two avenues for refinement are available: h-refinement and p-refinement. In p-

refinement successively higher-order shape functions are assigned to the element formulation.

To refine a particular element, the old stiffness matrix for the element is invalidated and a

new matrix is computed from the new shape function. No new tree-nodes are generated,

but the size of the stiffness matrix increases.

In h-refinement, existing elements are subdivided into smaller elements of the same

type. To improve the geometric accuracy, localised h-refinement is done on the origina!

geometric model rather than on the current finite element approximation. Thus to refine a

particular element, one deletes the element, creates and classifies new vertices and nodes, and



Kela, 8azena 8/Perucchio 10

inserts the smaller new elements into the grid. Discontinuities of displacements along edges

where smaller elements abut on larger elements are avoided by using constraint equations.

< Figure 10 >

Figure 10 shows examples of localized refinement. Note that successive h-

refinements improve the geometric approximation of the original solid. A maximum cross-

element grading of 2:1 is maintained during refinement.

Storage for the new entities created by h-refinement could be provided by adding

a whole new bottom layer to the grid, but this would be wasteful unless very extensive

h-refinement is needed. If the h-refinements are sparse, small localized explicit schemes or

linked-list methods are more efficient.

Assume now that the original mesh has been refined in a few regions using the

methods just described, that the affected elements have been tagged, and that the refined

mesh is to be re-analyzed. ClJarly one wants to do incremental analysis, i.e. to use partial

results from the earlier analysis insofar as possible. These results are available through the

hierarchical grid; for example, a tree of K-matrices will exist - see Figure 7.

The incremental Assembler traverses the tree and by examining the sons of each

parent node, detects new offspring and computes the appropriate stiffness matrices (Fig-

ure 11). Stiffnesses for unmodified elements are recovered from storage, and new and old

stiffnesses are combined to form a modified substructure. If a node has no new offspring,

the complete old substructure is reused. The incremental Solver works similarly, inspecting

tags on data to distinguish valid and invalid old results and reusing the former whenever

possible.

5.2 Self-Adaptive Algorithm

Our current algorithm for controlling self-adaptive incremental analysis operates

as follows (see Figure 1). After a mesh (either initial or refined) has been analyzed, error

indicators are computed for each element together with an estimate of the global error. If

the global error exceeds a pre--specified limit, the systems calls for refinement and reanalysis

in regions having large local errors. This process continues automatically until the global

error estimate talk below the pre-specified limit.

Thus far we have done little research on errors per se, and our current error measures

are crude. As in [KELL83], our element error-indicator (e_) is merely the average of the



Keh, S_en. _ Peru¢¢hio 11

stress jumps (J, : normal and tangential) across each of the element's edges with dimension

(h) and assuming linear isoparametric elements

2 1-v h f j2dr

normalized by the strain energy of the displaced model. Our global error estimator is simply

the sum of the element error indicators. Figure 10c shows the computed values of the element

error indicators for a sample problem. Note that, in the vicinity of the hole and around the

re-entrant corner the data imply high stress gradients because the error indicators are high.

Figure lOd shows an automatic refinement resulting from this set of error indicators.

An obvious improvement to the current algorithm: replace the single global error

indicator with a hierarchical series of regional error indicators. These can be computed

bottom-up in the tree, and should force selective refinement in cases where the overall

(average) error is small but errors in small regions are _igh.

6 AUTOMATIC MESHING FOR S-D PROBLEMS

In this section we present the algorithms that we are currently developing to ex-

tend to 3-D problems the automatic meshing procedure described in Section 3. Since

our work is based on the octree generator built in the PADL-2 solid modelling system

[HART83,KELA84], stage 1 of meshing - which includes (i) boxing the domain, (ii) subdi-

viding the box into octal cells, (iii) classifying the cells as IN, OUT and NIO, and (iv) further

subdividing and reclassifying NIO cells until a minimal level of subdivision is reached - is

virtually completed. Figure 11 shows the interior octree for a PADL defined solid.

< Figure 11 >

Stage 2 involves associating each of the NIO cells (represented by the intersection

of the solid with a grid-level octant) to a valid finite element topology. Before being decom-

posed into elements, NIO cells are classified as Simple (SNIO) or Complex (CNIO). SNIO

cells, formed by the intersection of the grid-level octant with a single "cutting" surface, are

topologically simple, as shown in Figure 12. CNIO cells, on the other hand, intersect the

boundary surface and also contain vertices and edges coming from the solid's boundary. A

typical CNIO cell is illustrated in Figure 13. Due to the differences in their geometry and

topology, the decomposition of SNIO and CNIO cells proceeds along two different avenues.



Kela, Sazcna 8 Perucchio 12

< Figure 12 >

< Figure 13 >

Decomposition of SNIO cells

Since the number of possible configurations of SNIO cells is inherently limited,

SNIO cells can be decomposed into finite elements by associating the cell to an appropriate

template containing a mesh topology. Specifically, the number of possible cases is restricted

to seven (the number of vertices of the original octant shaved off by the cutting surface

identifies the appropriate template - Figure 14).

< Figure 14 >

The topolgies embedded in the templates are not unique and include hexahedral,

wedge, pyramid and tetrahedral isoparametric linear elements. However, as explained fur-

ther on in this section - care has been taken in producing mesh topologies that, whenever

possible, associate each uncut octant faces to a quadrilateral face of a hexahedral, wedge or

pyramid element. We note, finally, that (a) in general, most of the NIO cells are classified

as SNIO, and (b) SNIO decomposition is computationally inexpensive.

Decomposition of CNIO cells

The topological description of CNIO cells is not confined to a limited number of

possible configurations. Hence, in this case mapping is of little use and the automatic

decomposition of the cells can be done only by recursive element extraction. We are currently

implementing a family of operators - based on the approach in [WOO84], Figure 15 -

that works on the boundary representation (Brep) of the polyhedron associated with the

CNIO cell. Because of the complexity of the operations involved - (|) scan the topological

information contained in the Brep to identify a candidate element, (ii) verify the validity of

the element, and (iii) extract the element and update the Brep - CNIO decomposition is

considerably more expensive than template matching.

< Figure 18 >

Elements for 3-D analysis

The family of linear isoparametric elements used in the above decomposition schemes

can be generated by collapsing a standard 8-node isoparametric brick element. Note that

the use of pyramids is mandated by the necessity of preserving a regular interior mesh of

hexa.hedra] elements, whenever tetrahedral elements are introduced in the proximity of the



Kela, Sazena _ Perucchio

boundary. Pyramids allow interfacing triangular sides belonging to tetrahedral or wedge

elements with quadrilateral faces of hexahedral elements without introducing discontinuities

in the displacement field.

13

7 DISCUSSION

Advantages

The main advantage we see is that mesh generation and mesh analysis are integrated

and, in effect, collaborate under the control of the error evaluator. Thus the mesher only

refines regions where refinement is needed, and the analyzer only computes _what's new"

about a refined mesh. This type of efficient adaptive behavior is, in our opinion, the key to

efficient automatic finite-element analysis.

Hierarchical substructuring is the driving principle in both the mesh generator and

mesh analyzer, s It seems to be a very powerful principle of divide-and-conquer genre, in

that it enables hard problems (object decomposition, equation-set solution) to be decom-

posed into smaller, tractable problems via spatial partitioning.

Open Issues

We cite four sets of issues that will require extensive theoretical work.

I. Error measures and indicators: measures better than the ones we use currently are

needed, especially for 3-D work.

o

1

Adaptive convergence: the convergence behavior of the self-adaptive process must

be investigated (strong convergence properties are required for a truly automatic

system).

Computational complexity: preliminary results let us conjecture that hierarchical

substructuring techniques are asymptotically more efficient than the methods used

s The hierarchical tree might be viewed u s generalization of the structure, described in

[RHEIg0]. However, the latter it applied in mabdomaina that are mapped to regular figures (squares
and triangles), and Rheinboldt's tree addressee the element partitioning induced in the regular
figures. By avoiding mapping we are able to use the same structure for both meshing and analysis;
further, the regularity of our structure permRs systematic cell numbering and, hence, data access

through calculated addresses rather than through searching or table lookup.



Kela, Sazena 8 Perucchio 14

in standard solvers, but an in-depth study is needed to prove/disprove our conjec-

ture.

4. Non-linear analysis: our approach to substructuring appears promising for non-

linear analysis.

While the issues above are certainly important in the long term, in the immediate

future one other issue - completing the extension of our meshing and analysis system to

3-D problems - is more pressing. The current status of 3-D work is as follows :

The 2-D spatial substructuring techniques for maasging saa]ysis sad adaptive re--

meshing and re-analysis extend gracefully to 3-D, and indeed most of the 2-D

control code is directly usable in 3-D.

The major open issues lie in Stage 2 of the automatic meshing procedure, specifically

in decomposition of CNIO cells. A promising approach, based on a family of element

extractors, is currently being implemented.

In summary, we believe that hierarchical substructuring as embedded in the experi-

mental system described here represents an important contribution on the road to genuinely

automatic finite element analysis.

ACKNOWLEDGEMENTS

Herb Voelcker, former director of the Production Automation Project and currently

at Cornell University, contributed extensively to this research. Also we acknowledge the

contribution and the encouragement of John Goldak, of Carleton UniversiW, and of Vic

Genberg, of the Eastman Kodak Company. The computer-output displays were produced

on equipment donated by Tektronix, Inc., and other Industrial Associate companies of the

Production Automation Project provided both equipment and funds for the work. Sustaining

support was provided by the Nationad Science Foundation under Grant(s) ECS-8104646 &

DMC-8403882. The findings and opinions expressed here those of the authors and do not

necessarily reflect the views of the various sponsors.

REFERENCES

[BABUT8] I. Babuska and W. C. Rheinboldt, "A-posteriori error estimates for the finite el-

ement method", INTERNATIONAL JOURNAL FOR NUMERICAL METHODS

IN ENGINEERING, vol. 112, pp. 1597-1615, 1978.



Kela, Sa=ena 8 Perucchio 15

[CAVE85] J. C. Cavendish, D. A. Field and W. H. Frey, =An approach to automatic three-

dimensional finite element mesh generation", INTERNATIONAL JOURNAL FOR

NUMERICAL METHODS IN ENGINEERING, vol. 21, pp. 329-341'.

[GAGO83] J. P. De S. R. Gago, D. W. Kelly, O. C. Zienkiewicz and I. Babus]m, =A poste-

rior] error analysis and adaptive processes in the finite element method: Part 1"I

- Adaptive mesh refinement", INTERNATIONAL JOURNAL FOR NUMERICAL

METHODS IN ENGINEERING, vol. 19, pp. 1621-1656, 1983.

[HART83] E. E. Hartquist, =Public PADL-2", IEEE COMPUTER GRAPHICS & APPLICA-

TIONS, vol. 3, no. 7, pp. 30-31, October 1983.

{JACKSO] C. L. Jackins and S. L. Tanimoto, =Oct-trees and their use in representing three-

dimensional objects", COMPUTER GRAPHICS & IMAGE PROCESSING, vol. 4,

no. 3, pp. 249--270, November 1980.

[KELA84] A. Kela, =Programmers guide to the PADL-2 octree processor output system",

INPUT/OUTPUT GROUP MEMO. No. 15; Production Automation Project, Uni-

versity of Rochester; January 1984.

[KELA8?] A. Kela, =Automatic finite element mesh generation and self-adaptive incremental

analysis through solid modeling", Ph. D. Dissertation, Production Automation

Project, University of Rochester, 1987.

[KELL83] D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz and I. Babus]m, =A posteriori

error analysis and adaptive proce_es in the finite element method: Part I - Er-

ror analysis', INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN

ENGINEERING, vol. 19, pp. 1593--1619, 1983.

[LEE82] Y. T. Lee and A. A. G. Requicha, =Algorithms for computing the volume and other

integral properties of solids: Part H - A family of algorithms based on representation

conversion and cellular approximation', COMMUNICATIONS OF THE ACM, vol.

25, no. 9, pp. 642--650, September 1982.

[PEAN?9] A. G. Peano, A. Pasini, R. Riccioni and L. Sardella, =Adaptive approximation in

finite element structural analysis', COMPUTER & STRUCTURES, vol. 10, pp.

332-342, 1979.



Eela, $6zena 8 Perucchio 16

[PERU821

/REQU831

[RHEI80]

[SUHA74]

[woo841

[W()RD84]

[YERR83]

IYERR84]

R. Perucchio, A. R. Ingraffea and J. F. Abel, "Interactive comuter graphic prepro-

cessing for three-dimensional finite element analysis", INTERNATIONAL JOUR-

NAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 18, pp. 909-926,

1982.

A. A. G. Requicha and H. B. Voelcker, "Solidmodelling: Current status and research

directions",IEEE COMPUTER GRAPHICS & APPLICATIONS, vol. 3, no. 7, pp.

25-37, October 1983.

W. O. Rheinboldt and C. K. Memztenyi, "On a data structure for adaptive finite el-

ement mesh refinements", ACM TRANSACTIONS ON MATHEMATICAL SOFT-

WARE, vol. 6, no. 2, pp. 166-187, June 1980.

J. Suhaxa and J. Fukuda, "Automatic mesh generation for finite element analysis", in

ADVANCES IN COMPUTATIONAL METHODS IN STRUCTURAL MECHAN-

ICS AND DESIGN, J. T. Oden, R. W. Clough and y. Yamadoto eds., Univ. of

Alabama Press, pp. 607-624, 1974.

T. C. Woo and T. Thoma.sma, "An algorithm forgenerating solidelements in objects

with holes", COMPUTERS & STRUCTURES, vol. 18. no. 2, pp. 333-342, 1984.

B. Wordenweber, "Finite element mesh generation", COMPUTER-AIDED DE-

SIGN, vol. 16. no. 5, pp. 285-291, September 1984.

M. A. Yerry and M. S. Shephard, "A modified quadtree approach to finiteelement

mesh generation", IEEE COMPUTER GRAPHICS & APPLICATIONS, vol. 3, no.

1, pp. 39--46, January/February 1983.

M. A. Yerry and M. S. Shephard, "Automatic three-dimensional mesh generation

by the modified--octreetechnique", INTERNATIONAL JOURNAL FOR NUMER-

ICAL METHODS IN ENGINEERING, vol. 20, pp. 1965-1990, 1984.



LIST OF FIGURES

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1 An automatic finite element analysis system.

2 A quadtree approximation

3 First stage of the automatic meshing algorithm.

4 Second stage of the meshing algorithm (a) generation of bS nodes and

(b) linking bS and blS nodes.

5 Node relocation to get well-formed elements.

6 Example of automatically generated 2-D FEM mesh.

7 Assembly via multi-levelsubstructuring.

8 Substructures at various levels during ,_sembly.

Fig. 9 Nodal displacement at stages of the solution process.

Fig. 10 Refinement driven by error indicators.

Fig. 11 Solid domain with interior octree produced by PADL-2

Fig. 12 Typical Simple NIO cell.

Fig. 13 Typical Complex NIO cell.

Fig. 14 Template driven decomposition of SNIO cells.

Fig. 15 Element extractors for CNIO cells.



_t_

' I



0

[-i

0

0
m

7

tl

II
II
0

tll tlt
'11 m ,11

t
-- 0 0

R I! I!

N 0 m

II E]

| I

/J
f/

f

IU,,.,

I1,1

o_



O_ POOR QUALIT_

|
A

\
\



,,D

_+i,->._:_!!.,...,.

I.l

°_,_

r_

0
If: li r_l

o c#l c#l
N

ORIGINAL PAGE I_

OF. POOR QUALITY



o_

c_



o_

f_





o_,,I

(IJ elf N N

N N N N N

N N N

A A

A

U
v



cr_

c_

N N

J . • •

_,,.0 I _ ,....._¢ _ . ,_,_

k • _ m

.lr
mk.

J Jr

N

N_

I)

A (.)

v ¢o ¢o ql_ N,

N, ¢t_ eQ ¢o ¢o e_ NF

(too N, N, O



m iel_

- _ - - - _ _ A '

4 I,.,,.., _1 ,ili_

O

.i-I

cO
V

Z ,,,

a me 4

Z e

N M

M qP

m --

t 83

(

tb v

V



I i i I"
IAL

\
llll

Fisure 11



>

>

Figure 12



[
Vortex

Edge

Boundsry
Surface

Edge

Figure 13



SNIO Cells

Template-derived F.E. Topologies

Figure 14



• Extraction of tetrahedra :
Operators rl and r_ (Woo & Thomasma, 1983).

• Extraction of pyramids : operator rs.

Fisure 15


